

Real Biotech Corporation

13F.-2, No.33, Sec. 1, Minsheng Rd., Banqiao City, Taipei County 220, Taiwan, R. O. C. Tel: +886 2 2950 9000 Fax: +886 2 2950 0505

RealSens[™] Real-Time PCR Mastermix (For SYBR Green System w/ ROX)

Description

RealSens[™] Real-Time PCR Mastermix is supplied as 2-fold concentrated, ready-to-use mixture which is highly sensitive and optimized for use with any real-time PCR cycler using SYBR Green detection format. It contains all the factors needed to perform real-time PCR, including RBC SuperTaq® HotStart DNA Polymerase, SYBR Green I dye, ROX passive reference dye, RBC SYBR Green real-time PCR buffer, dNTPs and 5mM MgCl₂. The only step to perform real-time PCR is to add the primers and template. With unique composition of RBC SuperTaq® HotStart DNA Polymerase and RBC SYBR Green real-time PCR buffer, RealSens[™] Real-Time PCR Mastermix provides highly sensitive detection and accurate quantification. It makes real-time PCR simple and easy.

Specifications

Cat. No.	Product Name	Specification
	RealSens [™] Real-Time PCR Mastermix	
RT401	(For SYBR Green System w/ ROX),	2X RealSens [™] Real-Time PCR Mastermix:1.25mI
	100 reactions	
	RealSens [™] Real-Time PCR Mastermix	
RT402	(For SYBR Green System w/ ROX),	2X RealSens [™] Real-Time PCR Mastermix: 5ml
	400 reactions	
	RealSens [™] Real-Time PCR Mastermix	
RT403	(For SYBR Green System w/ ROX),	2X RealSens [™] Real-Time PCR Mastermix: 10ml
	800 reactions	

Features

- High PCR specificity with unique composition of RBC SuperTaq® HotStart DNA Polymerase
- Highly sensitive detection and accurate quantification
- Optimized, ready-to-use mixture format makes real-time PCR simple and easy

Content

- RBC SuperTaq® HotStart DNA Polymerase
- SYBR Green I dye
- ROX passive reference dye
- RBC SYBR Green real-time PCR buffer
- \bullet dNTP mix including dATP ${\scriptstyle \ensuremath{\cdot}}$ dCTP ${\scriptstyle \ensuremath{\cdot}}$ dGTP ${\scriptstyle \ensuremath{\cdot}}$ dTTP
- 5mM MgCl₂

Real Biotech Corporation

13F.-2, No.33, Sec. 1, Minsheng Rd., Banqiao City, Taipei County 220, Taiwan, R. O. C. Tel: +886 2 2950 9000 Fax: +886 2 2950 0505

Quality Control

Tenfold serial dilution $(10^9 \sim 10^{10})$ of plasmid DNA were amplified using primers specific to the NNV gene. Triplicate reactions at each concentration were amplified along with no-template controls. Standard curve is r=0.999, efficiency=92.4% and standard deviation of Ct<1.0.

Applications

RealSens[™] Real-Time PCR Mastermix is compatible with all available real-time cyclers, including instruments from Applied Biosystems, Bio-Rad, Roche…etc. It is optimized for quantitative real-time PCR and two-step RT-PCR using SYBR Green detection format.

Shipping and Storage Conditions

RealSens[™] Real-Time PCR Mastermix is shipped on dry ice and should be stored immediately upon receipt at -20°C in a constant temperature freezer and protected from light. Avoid repeated freeze–thaw cycles. With proper storage and handled correctly, RealSens[™] Real-Time PCR Mastermix can be stored for up to 12 months without showing any deduction in performance and quality.

Real Biotech Corporation

13F.-2, No.33, Sec. 1, Minsheng Rd., Banqiao City, Taipei County 220, Taiwan, R. O. C. Tel: +886 2 2950 9000 Fax: +886 2 2950 0505

Protocol

General Reaction Conditions

Our protocol is for a reaction size of 25ul. This protocol serves only as a guideline for real-time PCR amplification. Optional reaction conditions may vary and must be individual determined.

Notes: Use disposable tips containing hydrophobic filters to minimize cross-contamination.

1. Thaw the reagents completely, vortex well and then add following components to a sterile microtube on ice:

Component	Volume/ Reaction	Final Concentration
2X RealSens [™] Real-Time PCR Mastermix	12.5 µl	1X
Forward Primer (10µM)	0.75µl	0.3~0.6µM
Reverse Primer (10µM)	0.75µl	0.3~0.6µM
RNase-Free Water	Add to 23.0µl	

- 2. Mix above components thoroughly by pipetting up and down and dispense the 23µl of mixture into PCR tubes or plates.
- 3. Add 2µl of the DNA or cDNA and mix carefully by pipetting up and down.
- 4. Suggested Real-Time Cycler Conditions. The temperature of $X^{\circ}C$ should be above the Tm of Primer dimmers, but around $3^{\circ}C$ below the Tm of the specific PCR product. (Tm dimmer < X < Tm product).

Segment	Number of Cycles	Temperature	Time
1	1	95 ℃	10 minutes
2	40~45	95 ℃	15 seconds
		X°C*	30 seconds
3 1		4 °C	∞
* X: optimal annealing temperature is depending on user's primer sequences.			

For the target gene shorter than 300 bp:

For the target gene longer	than	300	bp:
----------------------------	------	-----	-----

Segment	Number of Cycles	Temperature	Time		
1	1	95 ℃	10 minutes		
		95 ℃	15 seconds		
2	40~45	X ℃*	25 seconds		
		72 °C **	10 seconds		
3 1 4°C ∞					
* X: optimal annealing temperature is depending on user's primer sequences.					
** It takes around 1 minute for amplifying 1kb product at 72 $^\circ\!{ m C}$.					

5. Place the PCR tubes or PCR plates in the thermal cycle and start the cycling program.

6. Perform a melting curve analysis of the PCR products.